Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(5)2023 05 14.
Article in English | MEDLINE | ID: covidwho-20234156

ABSTRACT

The respiratory epithelium, particularly the airway epithelium, is the primary infection site for respiratory pathogens. The apical surface of epithelial cells is constantly exposed to external stimuli including invading pathogens. Efforts have been made to establish organoid cultures to recapitulate the human respiratory tract. However, a robust and simple model with an easily accessible apical surface would benefit respiratory research. Here, we report the generation and characterization of apical-out airway organoids from the long-term expandable lung organoids that we previously established. The apical-out airway organoids morphologically and functionally recapitulated the human airway epithelium at a comparable level to the apical-in airway organoids. Moreover, apical-out airway organoids sustained productive and multicycle replication of SARS-CoV-2, and accurately recapitulated the higher infectivity and replicative fitness of the Omicron variants BA.5 and B.1.1.529 and an ancestral virus. In conclusion, we established a physiologically relevant and convenient apical-out airway organoid model for studying respiratory biology and diseases.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Lung , Organoids
2.
Emerg Infect Dis ; 27(10): 2619-2627, 2021 10.
Article in English | MEDLINE | ID: covidwho-1453198

ABSTRACT

The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Influenza, Human , Animals , Birds , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL